Laser Spectroscopy
Raman Heterodyne Detection of NMR
Magnetic resonance transitions can be detected optically by coherent Raman scattering, a process that may be considered as a frequency shift of an optical photon. The frequency-shifted light is detected through optical heterodyning, which returns the RF signal. The aim of our work is to improve these methods and make them applicable to a greater number of systems.
Laser cooling of semiconductors
The reduction of the temperature by suitable laser irradiation, is a well established technique for cooling free atoms and trapped ions. Another interesting application would be the reduction of the temperature of condensed matter, specially semiconductors. Laser cooling works by using thermal energy available in the material to increase the energy of photons: the energy of the emitted photons must be higher than that of the absorbed photons. This process, known as luminescence up-conversion, can be used to realize laser cooling of semiconductors which offers the opportunity for vibration-free and direct integration into electronic and optoelectronic devices.
Laser Assisted NMR of GaAs Nanostructures
NMR of quantum wells faces a twofold challenge: the number of spins in a layer of only a few nanometers is significantly smaller than the detection limit of conventional NMR spectrometers. Even if it were possible to detect this small number of spins, the signal would be completely covered by the much larger signal from the identical spins in the substrate. Using lasers for excitation and detection can overcome the sensitivity limit by enhancing the signal by several orders of magnitude. Furthermore, the restriction of the signal to a specific optical wavelength selects a specific quantum well, while the substrate signal is effectively suppressed. Additional details can be found here.
Relevant Publications:
[1] Breaking the Stokes-anti-Stokes symmetry in Raman heterodyne detection of magnetic-resonance transitions
R. Neuhaus, M. J. Sellars, S. J. Bingham and D. Suter
Phys. Rev. A 58, 4961-4966 (1998)
[2] Depth profile of the implantation-enhanced intermixing of Ga+ focused ion beam in AlAs/GaAs quantum wells
S. Eshlaghi, C. Meier, D. Suter, D. Reuter and A. D. Wieck
J. Appl. Phys. 86, 6605-6607 (1999)
[3] Coupling mechanisms for optically induced NMR in GaAs quantum wells
M. Eickhoff, B. Lenzmann, G. Flinn and D. Suter
Phys. Rev. B 65, 125301, 125301 (2002)
[4] Mapping of strain and electric fields in GaAs/AlGaAs quantum-well samples by laser-assisted NMR
M. Eickhoff, B. Lenzmann, D. Suter, S. E. Hayes and A. D. Wieck
Phys. Rev. B 67, 085308 (2003)
[5] Nuclear quadrupole resonance of an electronically excited state from high-resolution hole-burning spectroscopy
R. Klieber, A. Michalowski, R. Neuhaus and D. Suter
Phys. Rev. B 67, 184103 (2003)
[6] K-dependent exchange interaction of quadrupole excitons in Cu2O
G. Dasbach, D. Fröhlich, H. Stolz, R. Klieber, D. Suter and M. Bayer
Phys. Stat. Sol. (b) 238, 541-547 (2003)
[7] All-optical measurement of nuclear-spin relaxation
R. Klieber, A. Michalowski, R. Neuhaus and D. Suter
Phys. Rev. B 68, 054426 (2003)
[8] Wave-Vector-Dependent Exciton Exchange Interaction
G. Dasbach, D. Froehlich, H. Stolz, R. Klieber, D. Suter and M. Bayer
Phys. Rev. Lett. 91, 107401 (2003)
[9] Pulsed optically detected NMR of single GaAs/AlGaAs Quantum Wells
M. Eickhoff and D. Suter
J. Magn. Reson. 166, 69-75 (2004)
[10] Wave-vector-dependent exchange interaction and its relevance for the effective exciton mass in Cu2O
G. Dasbach, D. Froehlich, R. Klieber, D. Suter, M. Bayer and H. Stolz
Phys. Rev. B 70, 045206 (2004)
[11] Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+ :Y2 SiO5
M. Nilsson, L. Rippe, S. Kröll, R. Klieber and D. Suter
Phys. Rev. B 70, 214116 (2004)
[12] Anisotropic effective exciton mass in Cu2O
G. Dasbach, D. Froehlich, H. Stolz, R. Klieber, D. Suter and M. Bayer
Phys. Stat. Sol. C 2, 886-889 (2005)
[13] High resolution spectroscopy of yellow 1S excitons in Cu2O
D. Froehlich, G. Dasbacha, G. B. H. v. Hoegersthal, M. Bayer, R. Klieber, D. Suter and H. Stolz
Sol. State Comm. 134, 139-142 (2005)
[14] Light-induced Knight shifts in GaAs/AlGaAs quantum wells
M. Eickhoff, S. Fustmann and D. Suter
Phys. Rev. B 71, 195332 (2005)
[15] Experimental demonstration of efficient and selective population transfer and qubit distillation in a rare-earth-metal-ion-doped crystal
L. Rippe, M. Nilsson, S. Kröll, R. Klieber and D. Suter
Phys. Rev. A 71, 062328 (2005)
[16] Correlating NQR transitions of ground and excited electronical states
R. Klieber and D. Suter
Phys. Rev. B 71, 224418 (2005)
[17] Time-resolved coherent double Raman detection of nuclear spin transitions
R. Klieber and D. Suter
Phys. Rev. B 73, 094408 (2006)
[18] Spins as Probes of Different Electronic States
D. Suter and R. Klieber
Concepts Magn. Reson. A 30A, 116-126 (2007)
[19] Luminescence upconversion in GaAs quantum wells
S. Eshlaghi, W. Worthoff, A. D. Wieck and D. Suter
Phys. Rev. B 77, 245317 (2008)
[20] Photoluminescence up-conversion in GaAs quantum wells
S. Eshlaghi, W. Worthoff, A. D. Wieck and D. Suter
Proc. SPIE 7228, 72280B (2009)
[21] Hyperfine characterization and spin coherence lifetime extension in Pr3+:La2(WO4)3
M. Lovric, P. Glasenapp, D. Suter, B. Tumino, A. Ferrier, P. Goldner, M. Sabooni, L. Rippe and S. Kröll
Phys. Rev. B 84, 104417 (2011)
[22] Spin Hamiltonian characterization and refinement for Pr3+:YAlO3 and Pr3+:Y2SiO5
M. Lovric, P. Glasenapp and D. Suter
Phys. Rev. B 85, 014429 (2012)
[23] High-Precision Nanoscale Temperature Sensing Using Single Defects in Diamond
P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr, J. Honert, T. Wolf, A. Brunner, J. H. Shim, D. Suter, H. Sumiya, J. Isoya and J. Wrachtrup
Nano Letters 13, 2738-2742 (2013)
[24] Faithful Solid State Optical Memory with Dynamically Decoupled Spin Wave Storage
M. Lovric, D. Suter, A. Ferrier and P. Goldner
Phys. Rev. Lett. 111, 020503 (2013)
[25] Evidence for the light hole in GaAs/AlGaAs quantum wells from optically-pumped NMR and Hanle curve measurements
E. L. Sesti, W. A. Worthoff, D. D. Wheeler, D. Suter and S. E. Hayes
J. Magn. Reson. 246, 130--135 (2014)
[26] All-optical NMR in semiconductors provided by resonant cooling of nuclear spins interacting with electrons in the resonant spin amplification regime
E. A. Zhukov, A. Greilich, D. R. Yakovlev, K. V. Kavokin, I. A. Yugova, O. A. Yugov, D. Suter, G. Karczewski, T. Wojtowicz, J. Kossut, V. V. Petrov, Yu. K. Dolgikh, A. Pawlis and M. Bayer
Phys. Rev. B 90, 085311 (2014)
[27] Ultra-deep optical cooling of coupled nuclear spin-spin and quadrupole reservoirs in a GaAs/(Al,Ga)As quantum well
M. Kotur, D. O. Tolmachev, V. M. Litvyak, K. V. Kavokin, D. Suter, D. R. Yakovlev and M. Bayer
Communications Physics 4, 193 (2021)